ASGA: Improving the Ant System by Integration with Genetic Algorithms
نویسندگان
چکیده
1 Email: [email protected] ABSTRACT This paper describes how the Ant System can be improved by selfadaptation of its controlling parameters. Adaptation is achieved by integrating a genetic algorithm with the ant system and maintaining a population of agents (ants) that have been used to generate solutions. These agents have behavior that is inspired by the foraging activities of ants, with each agent capable of simple actions. Problem solving is inherently distributed and arises as a consequence of the self-organization of a collection of agents, or swarm system. This paper applies the Ant System with Genetic Algorithm (ASGA) system to the problem of path finding in networks, demonstrating by experimentation that the hybrid algorithm exhibits improved performance when compared to the basic Ant System.
منابع مشابه
A Hybrid Modified Meta-heuristic Algorithm for Solving the Traveling Salesman Problem
The traveling salesman problem (TSP) is one of the most important combinational optimization problems that have nowadays received much attention because of its practical applications in industrial and service problems. In this paper, a hybrid two-phase meta-heuristic algorithm called MACSGA used for solving the TSP is presented. At the first stage, the TSP is solved by the modified ant colony s...
متن کاملComparison of Ant Colony, Elite Ant system and Maximum – Minimum Ant system Algorithms for Optimizing Coefficients of Sediment Rating Curve (Case Study: Sistan River)
By far, different models for determining the relationship between the flow rate and amount of precipitation have been developed. many models are based on regression models with limited assumptions. one of the most common methods for estimating sediment of rivers is sediment rating curve. for better estimation of the amount of sediment based of sediment curve rating equation, it is possible t...
متن کاملPortfolio Optimization by Means of Meta Heuristic Algorithms
Investment decision making is one of the key issues in financial management. Selecting the appropriate tools and techniques that can make optimal portfolio is one of the main objectives of the investment world. This study tries to optimize the decision making in stock selection or the optimization of the portfolio by means of the artificial colony of honey bee algorithm. To determine the effect...
متن کاملPMU Placement Methods in Power Systems based on Evolutionary Algorithms and GPS Receiver
In this paper, optimal placement of Phasor Measurement Unit (PMU) using Global Positioning System (GPS) is discussed. Ant Colony Optimization (ACO), Simulated Annealing (SA), Particle Swarm Optimization (PSO) and Genetic Algorithm (GA) are used for this problem. Pheromone evaporation coefficient and the probability of moving from state x to state y by ant are introduced into the ACO. The modifi...
متن کاملSimulation of Pore Water Pressure in the Body of Earthen Dams during Construction Using Combining Meta-Heuristic Algorithms and ANFIS
Accurate prediction of pore water pressure in the body of earth dams during construction with accurate methods is one of the most important components in managing the stability of earth dams. The main objective of this research is to develop hybrid models based on fuzzy neural inference systems and meta-heuristic optimization algorithms. In this regard, the fuzzy neural inference system and opt...
متن کامل